Панорама современного естествознания
40-е годы ознаменовались коренным изменением взгляда на структуру нуклеиновых кислот; до этого предполагалось, что все кислоты построены из одинаковых тетра-нуклеотидных блоков и поэтому лишены специфичности. Отказ от этого представления произошел в результате детального исследования структуры нуклеиновых кислот, в которых первые крупные достижения принадлежали Д. Гуланду (Англия) и Э. Чаргаффу (США). Чаргаффу в 1949-1951 годах удалось показать, что нуклеиновые кислоты обладают специфичностью, т. е. что кислоты, полученные из разных биологических источников, различаются по своему составу.
Результаты, полученные Чаргаффом, создали предпосылку расшифровки молекулы ДНК, которую произвели в 1953 году Ф. Крик (Англия) и Д. Уотсон (США).
Уотсону и Крику удалось построить модель молекулы ДНК, напоминающую двойную спираль. Если эту спираль развернут на плоскость, то полученная структура будет напоминать лестницу. Таким образом, оказалось, что строение одной ветви молекулы ДНК целиком определяет строение другой ветви, поскольку последовательность оснований, примыкающих к одной из направляющих, однозначно определяет последовательность оснований, примыкающих к другой направляющей. Это важное свойство молекулы ДНК, названное комплиментарностью (дополнительностью), определяет генетическую функцию молекулы.
Для дальнейшего процесса становления молекулярной биологии большое значение имела работа по расшифровке механизмов репликации ДНК и транскрипции. Уотсон и Крик предположили, что репликация (воспроизведение) молекулы происходит следующим образом: двойная спираль раскручивается, и составляющие ее нити расходятся, разделяясь в местах соединения оснований. Затем на каждой из нитей в соответствии с правилами комплиментарности образуется новая молекула. В 1957 году американский биохимик А. Кронберг провел биосинтез ДНК с помощью репликации, подтвердив тем самым гипотезу Крика и Уотсона. Для того чтобы осуществить этот процесс, Кронбергу понадобилось выделить фермент, катализирующий его. За открытие этого фермента — полимеразы — и синтез ДНК Кронберг в 1959 году получил Нобелевскую премию по медицине (он разделил ее с С. Очоа, который провел биосинтез РНК).
Генетическая информация кодируется в ДНК с помощью четырех символов (оснований), располагающихся в определенной последовательности. Однако, поскольку существует 20 основных белковых аминокислот, следующей задачей было выяснить, каким образом запись на четырехбуквенном алфавите в ДНК переводится в запись на двадцатибуквенном алфавите в белках.
Решающий вклад в решение этой проблемы был сделан Г.А. Гамовым в 1954 году. Он предположил, что каждая аминокислота кодируется сочетанием из трех нуклеотидов (нуклеотид представляет собой элементарный мономер ДНК, состоящий из сахара, фосфата и основания). Доказательство этого предположения было получено лишь в 1961 году в результате работ Ф. Крика, Л. Барнета, С. Бреннера и Р. Ваттс-Тобина (Великобритания), а также работ М. Нирнберга и Дж. Маттеи (США).
К началу 60-х годов уже сложилось четкое понимание основных процессов передачи информации в клетке при синтезе белка. К понятию репликации прибавились понятия транскрипции и трансляции. При раздвоении молекулы ДНК последовательность ее оснований переводится в комплиментарную последовательность оснований информационной РНК (РНК, как и ДНК, построена с помощью четырех оснований, лишь вместо тимина в ней используется урацил — вещество, близкое ему по свойствам). Этот процесс передачи информации от гена матричной РНК называется транскрипцией. Затем РНК перемещается из ядра в цитоплазму, где она соединяется с рибосомой — субмикроскопической структурой, в которой происходит белковый синтез. В рибосоме происходит считывание генетической информации, т. е. последовательность оснований, содержащихся в РНК, приводится в последовательность аминокислот. Этот процесс называется трансляцией. Аминокислоты захватываются небольшими участками транспортной РНК и переносятся в нужное место к информационной РНК, находящейся в рибосоме. Для каждой аминокислоты есть своя транспортная РНК, состоящая приблизительно из 80 нуклеотидов. Так как насчитывается 20 аминокислот, то существует 20 транспортных РНК, каждая из которых соответствует кодону — тройке нуклеотидов в кодовой последовательности информационной (матричной) РНК. Когда все кодовые элементы информационной РНК соответствуют своим дополнительным элементам, аминокислоты располагаются в требуемом порядке, соединяясь через пептидные связи в цепь. Образовавшийся белок сходит с матрицы и процесс повторяется.