Расщепление (сегрегация) генов
Как отмечено выше, гибриды F2 садового гороха в экспериментах Г. Менделя характеризовались разнообразием, т. к. среди них встречались особи, у которых проявлялся как доминантный, так и рецессивный признаки. Можно сказать, что гибриды F2 были двух типов: одни из них были похожи на растения одной прародительской линии, другие — на растения другой прародительской линии. Например, гибриды из тех скрещиваний, в которых Г. Мендель наблюдал пару контрастирующих признаков, касающихся формы семян, характеризовались тем, что одни из них давали семена круглой формы, а другие — шероховатой.
Однако когда Г. Мендель провел подсчет гибридных растений F2, различающихся по форме семян, то оказалось, что из 7324 гибридов 5474 гибрида (74,74%) давали круглые семена (доминантный признак), а 1850 гибридов (25,36%) — шероховатые (рецессивный признак). Другими словами, три четверти всех гибридов F2 были похожи на растения одной прародительской линии, а одна четверть — на растения другой прародительской линии. Следовательно, отношение между гибридами Рд, дающими круглые семена, и такими же гибридами, дающими шероховатые семена, есть отношение между доминантными и рецессивными признаками гибридов. Аналогичные отношения между разными гибридами второго поколения были выявлены и в скрещиваниях, в которых наблюдению подлежали остальные контрастирующие признаки садового гороха
Как видно из табл. 15, у гибридов F2 проявлялся каждый признак из любой пары контрастирующих признаков. Другими словами, у гибридов F2 признаки подвергались расщеплению (сегрегации).
Обнаружение расщепления признаков во втором поколении гибридных растений садового гороха имело огромное значение, ибо, исходя из данных о частоте расщепления, Г. Мендель раскрыл внутреннее содержание этого явления, сформулировав гипотезу о существовании факторов (единиц) наследственности, которая затем переросла в теорию гена.
В рамках этой гипотезы Г. Мендель предположил, что контрастирующие признаки детерминируются какими-то факторами (элементами, единицами), которые передаются от родителей к потомству через половые клетки. Г. Мендель предположил также, что каждая пара контрастирующих признаков детерминируется парой факторов, которые в гибридах не смешиваются, но при образовании гамет расходятся, проходят чистыми в разные гаметы и затем оказываются в потомстве гибридов. Например, круглая форма семян, являясь доминантным признаком, детерминируется доминантным фактором, тогда как шероховатая форма семян, являющаяся рецессивным признаком, детерминируется рецессивным фактором. Каждое растение имеет пару генетических факторов на каждый контрастирующий признак, причем оба фактора присутствуют в растении одновременно.
После 1909 г. менделевские факторы наследственности по предложению В. Бэтсона (1861-1926) стали называть генами, членов генной пары — аллельными генами, или просто аллелями. Когда оба аллеля одинаковы (доминантны или рецессивны), то организм, несущий эти аллели, называют гомозиготным или гомозиготой по данному аллелю. Организм, несущий разные аллели (доминантный и рецессивный), называют гетерозиготным, или гетерозиготой.
Чтобы понять, каким образом гены передаются потомству и как они распределяются в потомстве между разными особями, необходимо уяснить сущность фенотипического и генотипического отношений, полученных Г. Менделем при изучении гибридов садового гороха. Обозначим, как это делал Г. Мендель, символом P1 исходные (родительские) растения, символами F1 и F2 — гибриды первого и второго поколений (соответственно), а символами R и г — аллельные гены (соответственно доминантный и рецессивный), детерминирующие, например, форму семян садового гороха. Поскольку растения P1 — чистолинейные, то те из них, которые дают круглые семена (являются гомозиготными и несут гены R и R), можно обозначить RR, а гаметы этих растений — R, тогда как те растения, которые дают шероховатые семена (являются тоже гомозиготными, несут гены г и г), можно обозначить гг, а гаметы этих растений — г.
Интерпретируя результаты своих опытов, Г. Мендель предположил, что при скрещивании исходных растений P1 женские гаметы R оплодотворяются мужскими гаметами г и наоборот, вследствие чего гибриды F1 будут гетерозиготными гибридами, имеющими генетическую формулу Rr и дающими семена круглой формы, т. к. аллель R подавляет аллель г. Когда гибрид F1 продуцирует гаметы, аллели Rr расщепляются, в результате чего половина гамет будет нести аллель R, половина — аллель г. Если же при самоопылении гибридов F1 женская гамета г оплодотворяется мужской гаметой R, то гибрид F2 будет иметь генетическую формулу RR, его гаметы будут гаметами R, а самоопыление таких гибридов F2 дает начало растениям RR. Если при самоопылении гибридов F1 женская гамета г будет оплодотворена мужской гаметой г, гибрид F2 будет гибридом с генетической формулой гг, его гаметы будут гаметами г, а самоопыление таких гибридов F2 дает растения гг. Если же при самоопылении гибридов F1 женская гамета г будет оплодотворена мужской гаметой г или наоборот, то образующийся гибрид F2 будет растением Rr (подобно гибриду F1), его гаметы будут гаметами двух видов — мужские R и r и женские R и г, а самоопыление таких гибридов дает растения с генетическими формулами RR, Rr и гг.