Закон сохранения энергии и невозможность создания вечного двигателя первого рода
Геофизическая энергия высвобождается в виде природных стихийных явлений (вулканизм, землетрясения, грозы, цунами и т.д.), обмена веществ в живых организмах (составляющих основу жизни), полезной работы по перемещению тел, изменению их структуры, качества, передачи информации, запасания энергии в различного рода аккумуляторах, конденсаторах, в упругой деформации пружин, мембран. Любые формы энергии, превращаясь друг в друга посредством механического движения, химических реакций и электромагнитных излучений, в конце концов, переходят в тепло и рассеиваются в окружающее пространство. Это явление проявляется в виде взрывных процессов, горения, гниения, плавления, испарения, деформации, радиоактивного распада. Происходит круговорот энергии в природе, характеризующийся тем, что в космическом пространстве реализуется не только хаотизация, но и обратный ей процесс — упорядочивание структуры, которые наглядно прослеживаются, прежде всего, в звездообразовании, трансформации и возникновении новых электромагнитных и гравитационных полей, и они снова несут свою энергию новым «солнечным системам». И все возвращается на круги своя.
Закон сохранения механической энергии был сформулирован немецким ученым А. Лейбницем. Затем немецкий ученый Ю.Р. Майер, английский физик Дж. Джоуль и немецкий ученый Г. Гельмгольц экспериментально открыли законы сохранения энергии в немеханических явлениях. Таким образом, к середине XIX в. оформились законы сохранения массы и энергии, которые трактовались как законы сохранения материи и движения. В начале XX в. оба эти закона сохранения подверглись коренному пересмотру в связи с появлением специальной теории относительности: при описании движений со скоростями, близкими к скорости света, классическая ньютоновская механика была заменена релятивистской механикой. Оказалось, что масса, определяемая по инерциальным свойствам тела, зависит от его скорости и, следовательно, характеризует не только количество материи, но и ее движение. Понятие энергии тоже подверглось изменению: полная энергия оказалась пропорциональна массе (Е = mс2). Таким образом, закон сохранения энергии в специальной теории относительности естественным образом объединил законы сохранения массы и энергии, существовавшие в классической механике. По отдельности эти законы не выполняются, т.е. невозможно охарактеризовать количество материи, не принимая во внимание ее движение и взаимодействие.
Эволюция закона сохранения энергии показывает, что законы сохранения, будучи почерпнутыми из опыта, нуждаются, время от времени в экспериментальной проверке и уточнении. Нельзя быть уверенным, что с расширением пределов человеческого познания данный закон или его конкретная формулировка останутся справедливыми. Закон сохранения энергии, все более уточняясь, постепенно превращается из неопределенного и абстрактного высказывания в точную количественную форму.
Первый закон термодинамики является законом сохранения энергии применительно к тепловым процессам. Этот закон утверждает невозможность создания вечного двигателя первого рода, который бы производил работу без подведения энергии.
Этот закон утверждает, что тепловая энергия, подведенная к замкнутой системе, расходуется на увеличение ее внутренней энергии и работу, производимую против внешних сил.
1 2