Операции симметрии
Познакомимся с основными понятиями классической симметрии, операциями симметрии. Можно выделить следующие операции симметрии:
отражение в плоскости симметрии (отражение в зеркале);
поворот вокруг оси симметрии (поворотная симметрия);
отражение в центре симметрии (инверсия);
перенос (трансляция) фигуры на расстояние;
винтовые повороты;
симметрия подобия;
радиально-лучевая симметрия
Отражение – это наиболее известная и чаще других встречающаяся в природе разновидность симметрии. Зеркало в точности воспроизводит то, что оно «видит», но рассмотренный порядок является обращенным: правая рука у вашего двойника в действительности окажется левой, так как пальцы расположены на ней в обратном порядке.
Зеркальную симметрию можно обнаружить повсюду: в листьях и цветах растений, архитектуре, орнаментах. Человеческое тело, если говорить лишь о наружном виде, обладает зеркальной симметрией, хотя и не вполне строгой. Более того, зеркальная симметрия свойственна телам почти всех живых существ, и такое совпадение отнюдь не случайно.
Зеркальной симметрией обладает все, допускающее разбиение на две зеркально равные половинки. Каждая из половинок служит зеркальным отражением другой, а разделяющая их плоскость называется плоскостью зеркального отражения, или зеркальной плоскостью. Эту плоскость можно назвать элементом симметрии, а соответствующую операцию – операцией симметрии.
Поворотная симметрия.
Внешний вид узора не изменится, если его повернуть на некоторый угол вокруг оси. Симметрия, возникающая при этом, называется поворотной симметрией. Во многих танцах фигуры основаны на вращательных движениях, нередко совершаемых только в одну сторону (т.е. без отражения), например, хороводы.
Листья и цветы многих растений обнаруживают радиальную симметрию. Это такая симметрия, при которой лист или цветок, поворачиваясь вокруг оси симметрии, переходит в себя. На поперечных сечениях тканей, образующих корень или стебель растения, отчетливо бывает видна радиальная симметрия. Соцветия многих цветков также обладают радиальной симметрией.
Отражение в центре симметрии.
Примером объекта наивысшей симметрии, характеризующим эту операцию симметрии, является шар. Шаровые формы распространены в природе достаточно широко. Они обычны в атмосфере (капли тумана, облака), гидросфере (различные микроорганизмы), литосфере и космосе. Шаровую форму имеют споры и пыльца растений, капли воды, выпущенной в состоянии невесомости на космическом корабле. На метагалактическом уровне наиболее крупными шаровыми структурами являются галактики шаровой формы. Чем плотнее скопление галактик, тем ближе оно к шаровой форме. Звездные скопления – тоже шаровые формы.
Трансляция, или перенос фигуры на расстояние.
Трансляция, или параллельный перенос фигуры на расстояние – это любой неограниченно повторяющийся узор. Она может быть одномерной, двумерной, трехмерной. Трансляция в одном и том же или противоположных направлениях образует одномерный узор. Трансляция по двум непараллельным направлениям образует двумерный узор. Паркетные полы, узоры на обоях, кружевные ленты, дорожки, вымощенные кирпичом или плитками, кристаллические фигуры образуют узоры, которые не имеют естественных границ.
Винтовые повороты.
Трансляцию можно комбинировать с отражением или поворотом, при этом возникают новые операции симметрии. Поворот на определенное число градусов, сопровождаемый трансляцией на расстояние вдоль оси поворота, порождает винтовую симметрию – симметрию винтовой лестницы. Пример винтовой симметрии – расположение листьев на стебле многих растений.
Головка подсолнечника имеет отростки, расположенные по геометрическим спиралям, раскручивающимся от центра наружу. Самые молодые члены спирали находятся в центре.
В таких системах можно заметить два семейства спиралей, раскручивающихся в противоположные стороны и пересекающихся под углами, близкими к прямым.
Вслед за Гете, который говорил о стремлении природы к спирали, можно предположить, что движение это осуществляется по логарифмической спирали, начиная всякий раз с центральной, неподвижной точки и сочетая поступательное движение (растяжение) с поворотом вращения.
Симметрия подобия.
К перечисленным выше операциям симметрии можно добавить операцию симметрии подобия, представляющую собой своеобразные аналогии трансляций, отражений в плоскостях, повороты вокруг осей с той только разницей, что они связаны с одновременным увеличением или уменьшением подобных частей фигуры и расстояний между ними.
1 2