Технология получение ГМО
Процедура получения ГМО включает в себя несколько основных этапов:
• Выделение и идентификация отдельных генов (соответствующих фрагментов ДНК или РНК), которые собираются перенести другим организмам. Для этого из организмов, обладающих такими генами, с помощью специальных химических методов выделяют нуклеиновые кислоты. Их разрезают на отдельные фрагменты, используя наборы ферментов-рестриктаз. Наибольшее значение имеют рестриктазы, способные разрезать нуклеиновые кислоты с образованием, так называемых липких (комплементарных) концов. Образующиеся фрагменты имеют короткие однонитчатые концы, состоящие из нескольких нуклеотидов. Если объединить в одной пробирке фрагменты ДНК любого происхождения (н-р, фрагменты плазмид бактерий и фрагменты животной или растительной ДНК), полученные с помощью одной и той же рестриктазы, дающей липкие концы, и добавить фермент – лигазу, то эти фрагменты соединятся между собой. В результате получится химерная (рекомбинантная) ДНК, которая может содержать фрагменты ДНК, выделенные из различных организмов или синтезированную искусственно. Описанная технология позволяет создавать на основе плазмид (или других типов векторов) сложные генетические конструкции, предназначенные для переноса в клетки других организмов.
• Клонирование (размножение) переносимого гена. Чтобы размножить созданные в пробирке немногочисленные химерные молекулы ДНК, векторы со встроенными в них фрагментами необходимо перенести в реципиентные клетки. Плазмидные векторы обычно вводятся в реципиентные клетки методом генетической трансформации. Особенно широкое распространение для клонирования векторных ДНК получила трансформация клеток кишечной палочки (E. сoli), основанная на совместной инкубации «компетентных» клеток бактерий (клетки способные к трансформации) и ДНК. В результате трансформации ДНК «поглощается» бактериальными клетками и автономно размножается в их цитоплазме (внутренняя среда клетки).
На селективной среде ведут отбор трансформированных бактериальных клеток, несущих какой-либо селективный маркер, который уже был на векторе или должен был появиться в процессе образования рекомбинантной молекулы.
Если, например, вектор содержал ген устойчивости к антибиотику ампицилину, то в селективную среду, добавляют этот антибиотик, и все выжившие клетки будут содержать данный вектор. Для того, чтобы выяснить, несут ли трансформированные клетки рекомбинантную ДНК, из клеток выделяют векторную плазмиду и подвергают её электрофорезу. Метод электрофореза основан, на принципе перемещения веществ в электрическом поле от одного полюса к другому со скоростью, зависящей от их размеров. С помощью этой простой техники можно в агарозном геле разделить, идентифицировать и очистить фрагменты векторной ДНК различной молекулярной массы.
• Перенос гена (или трансгенной конструкции) внутрь клетки и встраивание его в ДНК реципиентного организма. Основной способ переноса генов (генных конструкций) из клеток организма–донора в клетки организма–реципиента - это процесс трансформации. Трансформация включает в себя несколько основных этапов и требует соблюдения ряда условий: наличия трансформирующей ДНК; «компетентных» клеток; интеграции донорской (трансформирующей) ДНК в ДНК реципиента и экспрессии (работы) перенесённых генов. Существуют различные методы трансформации: путем гибридизации соматических клеток; инкубации реципиентных клеток с чужеродным генетическим материалом; микроинъекцией генетического материала в ядра клеток животных и др. Их применение, прежде всего, зависит от биологических особенностей организма – реципиента. Например, для трансформации клеток растений используют два основных метода (рис. 1).
1 2