Половое размножение и жизненные циклы дрожжей
· Диплоидные
. У этих дрожжей вегетативно размножаются только диплоидные клетки. Гаплофаза ограничена молодыми асками и аскоспорами. . Saccharomycodes ludwigii. У этих дрожжей диплоидизация происходит при слиянии аскоспор. Четыре гаплоидные аскоспоры прорастают и начинают копулировать попарно, когда они еще находятся в аске. Образовавшиеся диплоидные клетки размножаются вегетативно, образуя стабильную и длительную диплофазу. При соответствующих условиях, когда снимается контроль митотического деления ядра, диплоидная клетка вступает в митотический цикл и превращается в аск с 4 аскоспорами. Hanseniaspora uvarum. Жизненный цикл сходен с описанным выше за исключением того, что споры не копулируют, но ядро в зрелой споре после освобождения ее из сумки в условиях, обеспечивающих вегетацию, делится мейотически. Образовавшиеся два гаплоидных ядра сливаются, образуя уже диплоидную клетку, способную к вегетативному размножению. Сходный цикл наблюдается и у почвенных дрожжей Williopsis saturnus.
· Гапло-диплоидные
.
Существуют дрожжи, у которых вегетативное размножение может происходить как в гаплоидной, так и в диплоидной фазах. Длительность той или другой фазы зависит от вида и от условий роста. Saccharomyces cerevisiae. Эти дрожжи вегетируют преимущественно в диплоидном состоянии, но у них имеется короткая вегетативная гаплоидная фаза. Диплоидная клетка в условиях дефицита легкодоступных источников углерода прекращает почковаться, и ядро ее делится мейотически. В результате она превращается в аск с 4 гаплоидными аскоспорами, которые после освобождения из аска прорастают и образуют гаплоидное поколение. Гаплоидные клетки обычно мельче диплоидных и имеют более округлую форму. Шрамы почкования у них сближены, почки образуются группами в одном локусе. После нескольких циклов почкования две клетки конъюгируют и сливаются, восстанавливая диплоидное состояние.
Базидиомицетовые дрожжи
В отличие от аскоспоровых дрожжей, все дрожжи, которые относят к базидиомицетам, образуют в ходе полового размножения специальные клетки - базидии, несущие экзогенные споры (базидиоспоры). Значительную часть жизненного цикла занимает дикариотическая фаза, представленная дикариотическим мицелием с пряжками. Большинство видов гетероталличны и поэтому многие из них долгое время были известны только в гаплофазе как несовершенные дрожжи. Жизненные циклы базидиомицетовых дрожжей также достаточно разнообразны. Активное исследование жизненных циклов базидиомицетовых дрожжей началось лишь в конце 60-х - начале 70-х годов XX в., после того как японский миколог Исао Банно опубликовал результаты открытия полового цикла у хорошо известных и ранее считавшихся несовершенными красных дрожжей Rhodotorula glutinis. Ему удалось подобрать типы спаривания среди большого числа проверенных штаммов, и в результате их скрещивания он наблюдал образование дикариотического мицелия, на котором формировались структуры, морфологически сходные с хламидоспорами, то есть крупные клетки с сильно утолщенными оболочками и большим запасом внутриклеточных липидов. Именно в них затем происходило слияние двух ядер и последующий мейоз с восстановлением гаплоидного состояния. Эти клетки получили название телиоспор. При прорастании они образовывали промицелий с поперечными септами, делящими его на 4 клетки. Эти клетки отпочковывали гаплоидные споридии. Совершенная стадия Rhodotorula glutinis была названа Банно Rhodosporidium toruloides. Позже сходный цикл был описан для некоторых баллистоспоровых дрожжей и для нескольких видов несовершенного рода Candida. Их телиоспоровые стадии получили соответственно родовые названия Sporidiobolus и Leucosporidium. Сейчас похожие полные или не завершенные жизненные циклы известны для многих базидиомицетовых дрожжей. Они различаются формой телиоспор, характером их прорастания и морфологией базидий. . Другой тип жизненного цикла базидиомицетов с дрожжевой анаморфой известен для дрожалковых грибов порядка Tremellales. Эти грибы известны достаточно давно, так как в онтогенезе этих организмов есть стадия образования макроскопических плодовых тел, которые в природе обычно развиваются на старой древесине, на стволах мертвых деревьев. То, что базидиоспоры дрожалковых грибов способны к почкованию, было замечено микологами еще в конце XIX в., однако наличие самостоятельной дрожжевой фазы в цикле развития тремелловых было установлено после детального изучения видов рода Tremella в 1960-х гг. В культурах отдельные базидиоспоры гетероталличных видов дают начало дрожжевым стадиям. Мицелий обычно развивается только при смешивании штаммов совместимых типов спаривания. Смешение соответствующих типов спаривания приводит к быстрой реакции клеток на выделяющиеся феромоны; почкование прекращается, развиваются конъюгационные трубки, через которые клетки копулируют, происходит плазмогамия и развивается мицелиальная дикариотическая стадия. У многих видов в подходящих условиях вскоре после формирования дикариотического мицелия начинается развитие плодовых тел. В плодовых телах образуются 2-4-клеточные гетеробазидии. Освободившиеся базидиоспоры могут размножаться вегетативно почкованием или формированием баллистоспор. Характеристики жизненного цикла играют большую роль в систематике базидиомицетовых дрожжей. Однако очень часто у базидиомицетовых дрожжей, изолируемых из природных местообитаний, не удается наблюдать полный жизненный цикл при культивировании на лабораторных средах, поэтому их идентификация и классификация вызывают большие трудности. Значительные успехи в систематике таких анаморфных базидиомицетовых дрожжей достигнуты в последние десятилетия, особенно в связи с внедрением в таксономическую практику молекулярно-биологических методов. Как оказалось, группирование базидиомицетовых дрожжей на основе молекулярно-биологических признаков, в частности нуклеотидных последовательностей рРНК, часто не совпадает с характеристиками их жизненного цикла, особенно такими, как способность к образованию телиоспор, морфология базидий. Поэтому классификация базидиомицетовых дрожжей еще далека от завершенности и требует дальнейших исследований.